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Let fin C[--1, 1] be given, and let # be a fixed nonnegative integer. For 0
8 < 1 define Py(f) to be the polynomial of degree less than or equal to n of best
uniform approximation to f on [—8, 8]. 1t is well known that there exists for
each such 6, a constant A,(6) such that for all g e C[-—8, 6],

P f) - Polg) oo = MO S~ & g0
Sufficient conditions on f are obtained to ensure that the set {A,(8) 0 0 -7 o;

is bounded for some 8 =+ 0. An example is given showing that {A(8) 0 - = 8 -7 &}
may be bounded for some 8 - | but not for § -~ 1.

I. INTRODUCTION

Let C(/)denote the set of continuous, real valued functions on the compact
interval 7, and let M C C(/) be a Haar subspace of dimension »#. Let " -,
denote the uniform norm on /. For fe C(I) with best approximation P(f)

from M there is a constant A, .- 0 such that for any g ¢ C(1),
CP(f) - Py A gl (Lh

This is Freud’s well-known theorem (see [2, p. 82]). A number of recent
papers [1, 3, 4, 10] have examined variants of inequality (1.1). In particular,
Bartelt [1] and Cline [3] show that A = A, may actually be chosen inde-
pendent of f if the interval 7 is replaced by a finite point set X. Henry and
Schmidt [4] show that if I" is a compact subset of C(/)and ' M - = then

PUY = P Al gl (1.2)

for all feI" and ge C(1). That is, the Lipschitz constant A; in (1.2) is
“uniform” over the set I

Henry and Wiggins [5] utilized another kind of uniformity of Lipschitz
constants to compare two local approximate solutions to an initial value

* Research for this paper was conducted while this author was on leave from Montana
State University at North Carolina State University, August 1975 to June 1976.
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LIPSCHITZ CONSTANTS 225

problem. More specifically, [5] makes use of a special case of the problem
now to be described.

Let fe C[—1, 1], and for he C[—0, 0}, 0 < # < 1, define

Ihlls= sup | ACo).

—0<a<8
Suppose that P,(h) is the best approximation from the Haar subspace
M, C C[—0, 8] to he C[—6, 0]. Then inequality (1.1) becomes

[ Po(f) — Po(g)lle < AO) [/ —gllo (1.3)

for all g e C[—0, 0] where the fin (1.3) is viewed as the restriction of the
original f'e C[—1, 1] to the interval [—#6, 0]. Hereafter A(6) will designate
the smallest constant for which (1.3) holds for all g e C[~4, §].

Let M C C[—1, 1] be a Haar subspace, and note that the set A, of restric-
tions to [—8, 8] of functions in M is also a Haar subspace foreach 0 < 6 < 1.
In the sequel we examine conditions on f which ensure that the set

A={NO)[0<O<T} (1.4)

is a bounded set, with M = =, , the set of algebraic polynomials of degree
n or less.

The above description suggests that this paper might well be characterized
as an additional study of Chebyshev approximations on small intervals.
Other investigations of Chebyshev approximations on small intervals include
those of Maehly and Witzgall [7], Meinardus [8], and Nitsche [9].

2. AN EXAMPLE ON SMALL INTERVALS

In this section we construct an example which demonstrates that in general,
the set (1.4) is not bounded. This result is somewhat surprising, in that one
might expect the shrinking interval process to at least produce a uniform
Lipschitz constant for all § sufficiently small. That is, even if (1.4) is an un-
bounded set, one might expect that there exists a sufficiently small § > 0
such that

{M(0) 10 <8 <8} 2.1

is a bounded set. We propose to construct an f e C{—1, 1] and corresponding
sequences {z,} and {f,} with z; — 0 and f; € C[—z;, z;] such that

AL, T @2

Thus (2.1) is in general not a bounded set for any 8 > 0. Throughout this
section all approximates are from = .




226 HENRY AND ROULIER

ExXAMPLE 1. Define for real numbers u << v the function
hoolx) = (x —uw)(x — o). (2.3)

Note that h,, attains its maximum value on [, ¢] at the midpoint of [u. ¢}
and that

]/]u‘r du,el — (77‘A’ (24)

Let real numbers ¢ =~ 0, ¢ =~ 0, and —1 - 1< o<Iq <a<Cf -y -
8 <7< z=1 be given, where B--ao v - B 8- y . e Define s
ge C[—1, 1] as follows:

S(x) = ch(x) for « - x - f
= —chy(x) ttor B x sy (2.5)
= ch,5(x) for v ix <0
0 elsewhere;

g(x) = s(x) -+ alx - o) for = x . 0
= 0 on the complement of [, 7} (2.6)
== linear on [»n. «} and on [3, 7].

With this notation we prove the following lemma.

LEMMA 1. Let a > 0 satisfy
max[a(z — o), alo — t)] = cle2)% 2.7y

Then the polynomials of best approximation from m, 10 s and g, respectivelv.
on [t, z] are given by

p(x) =0 and g(x)y = alx — o). (2.8)

Proof. The first assertion is a simple consequence of the Chebyshev
alternation theorem [2, p. 75]. The alternation theorem also implies that ¢
is the best approximation to g on [«, 8] with ‘g - ¢ i s = c(€/2)%. Now
(2.7) implies that

g i) == e2)

Hence the alternation theorem implies that ¢ is the best approximation from
7, to g on [t z], concluding the proof of the second assertion.

Let {n,}_, be a sequence of positive integers with 3 < n, and n,® <> 5, ;.
k =1,2,...Fork -1, 2.. define

e ) =
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Now define real numbers —1 <1, <o, <7 < og < B <y <O <
T <z <1,k =1, 2,.., as follows:

y = —lim;

o = 0;

e = (1n?) — 2¢, = 1fngyy ;

o = (1/m®) — 3y ;

B = (1/n?) — (&x/2); (2.10)
vi = (1n®) + (&/2);

8 = (Im?) + fer;

T = (/md) + 2, < 1/ny

z, = 1/n; .

Let ¢, >0 and ¢, >0, k = 1, 2,... be positive integers to be determined
later.

We now define for k = 1, 2,..., 5,(x) and g,(x) to be as in (2.5) and (2.6),
respectively, with ¢, @, 1, o, 3, o, S, 7, 8, 7, and z replaced by ¢, , ax, t; , 04,
Nes s Brs> Yes 8k » Tr» and 2, , respectively.

Now let
flx) = 2‘1 §;(x) 2.11)
for -1 <x <1, and
A = 89+ T s 1)

for —1 <x<land k =1, 2,....

Let us observe that the restriction of £ to [nj}, n;'] is s,(x) and this is
also the restriction of f;, for j = k + 1. In turn, fi(x) = gu(x) for x € [nz}y,
73] and f(x) vanishes for x > n; .

Define

ar = cxl€x/2)Png (2.13)

where the ¢, are chosen recursively as follows: Choose ¢, =1 and ¢4
small enough to ensure that ¢;,, < ¢, and

Cont ( €rc2+1 .)8 T oaem < (fzi)8 (2.14)

Lemma 1 guarantees that the polynomial of best approximation from m;
to s, on [ty , zx] = [—2Zx, zx} 18 Pi(x) = 0. Since ¢;, < ¢, the construction
of fimplies that the polynomial of best approximation from =; to fon [—z;,
zi] 1s also py(x) = 0.
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Now ay, satisfies (2.13), and consequently Lemma 1 implies that the best
approximation from 7 to g, on [—z;,, z,] is ¢.(x) = a,x. Inequality (2.14)
and the construction of f;. then guarantee that ¢, is the best approximation
from 7, to f;. on [—z,, z;].

One can easily verify that

[
N

[ Jiley, = @0, (2.
and that
Pi = Gl = Ay (2.16)

Equations (2.15), (2.16). and (2.9) finally imply that

. P - Uiz
R T

[ / fl i:/‘

and consequently (2.2) 1s established for the fand f,. of (2.11) and (2.12).
In concluding Section 2 we note that ¢, , & I, 2..... can be chosen suffi-
ciently small to ensure that f'e C¥ -1, 1].

3. SUFFICIENT CONDITIONS FOR UNIFORM LirsciiTZz CONSTANTS

The foliowing theorem is the principal result of this section. We assume
throughout this section that # is given and that all approximates are from a7,
unless stated otherwise.

THeOREM 1. Let fe C[- L. 1], and suppose there exists a number o. O -
6 <L 1 such that fe C"i[--0, 8], and such that V'V does not change sign on
[—38,0) and on (0, 8). Furthermore, suppose there exist positive constants m
and M, and a polynomial p € 7y . K = n, such that

0 \ n f[)‘”'“(x) . ;f(u, 1)('\(’) I M 1 p(nil)(x) (3])
is valid for all x € [—6, 8]. Then
AA0) 10 << 0 =2 8] (3.2)

is bounded. That is, if Po(l) is the best approximation from m, 10 hc C[- 4, 0].
then there exists a A5 > O such that

PP Plg)io A S gl (3.3)
for every g € C[—0, 0] and for every 0 = 0.

Remarks. We note that this theorem does not imply that the set (1.4)
is bounded. but rather that a uniform Lipschitz constant exists for all ¢
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sufficiently small. We also note that although the f of Example 1 can be
chosen in C%—1, 1], the hypothesis (3.1) is not satisfied for any K > 1.

Before proceeding to the proof of Theorem 1 we state the following
lemma. The result is due to Cline [3], and will be used in the proof of
Theorem 1.

LemMMA 2. Let he C[—0, 0] with h ¢ =, . Let P € 7, be the best approxi-
mation to h on [—8, 8] and for each Chebyshev alternation E = {t;}111 for
h — P define q,€m, by q{t;) = sgnlh(t;) — P(t)), j = 1, 2., n+2;
j# i, andi = 1,..,n + 2. Now let

NE) = | max {[[¢; o}

1<i<n
Then there exists a Chebyshev alternation E* for h — P such that
A(0) << 2(EH), (3.4)
where A, (0) is the Lipschitz constant for h on [—0, 0].

Proof of Theorem 1. We first note that if fe 7, on [—8, 6] for some 0 ¢
(0, 1], then (3.1) implies that fe 7, on [— 8 8]. In this case A(f) < 2 for
all 8 < 8. Thus sup{A(0) |0 < 8 <8} <2, and (3.3) is then valid for
As = 2.

Suppose that f'¢ 7, on any interval [—0, ] € [—1, 1]. Let [, 8] be the
interval on which hypothesis (3.1) is satisfied. By replacing f by (—f), if
necessary, we may assume without loss of generality either that f*tU(x) > 0
for all xe[—3, 8], or that f(0) =0, f*»(x) >0 on (0,8], and
F7(x) < 0 on [—46, 0). We presently consider this latter case. Let 8 be any
positive number less than or equal to 8. Then inequality (3.1) implies that

m | pr(x) | < frrh(x) < M| prti(x))| (3.5)
for x € [0, 4], and that
m | p() | < —f 0 (x) < M | pr(x)| (3.6)

for x € [—48, 0]. Denote by E,(f; a, b) the degree of approximation to f from
the set @, on the interval {@, b]. Then (3.5) and Bernstein’s theorem [6, p. 38]
imply that

E,(mp; 0, 0) < E(f,0, 0). 3.7)

Since E,(f; 0, 0) < E (f; —0, 6), (3.7) implies that
E,(mp; 0, 0) < E,(f; —0, 0). 3.8)
Similarly, (3.6) implies that
E, (mp; —0,0) < E(f; — (3.9

640/21/3-2
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Let P(6, p) be the best approximation from =, to p on [0, 8], and let

e(0, p)(x) = p(x) — PO, p)(x). (3.10)
Then
Le(d, p)lito.s1 = Entp: 0, 6), (3.11)
and
e I(G, pY(x) == pV(x). (3.12)

Similarly, if P(—6, p) is the best approximation from =, to p on [—8, 0],
then

e(—8, p)(x) == p(x) — P(—#8, p)x), (3.13)
le(—0,p) [ p0 = Enp: —0.0). (3.14)

and
e(n-l) ,9 p)(X) l/ ])(\) (315)

Since (3.10) and (3.13) are both polynomials of degree at most K, Markoff’s
inequality [2, p. 91 and p. 94, problem 4] with (3.11) and (3.14) implies that

ns 1 2242
e (g, p)x) ,2,, gnKu — E(p:0,0). (3.16)
for x € [0, 6], and that
n-Fl g7 200
(b)) s E (s 0.0) (3.17)

for x € [—6, 0]. Expressions (3.12), (3.15), (3.16), and (3.17) then imply

41 j2n4 2
| pri g, < g%—~ max[E(p: 0, 8), E(p. —0,0)]. (3.18)

We note that although the constant XK in (3.16), (3.17), and (3.18) does
depend on #, it is independent of 6. Let £, - {#}71; be any Chebyshev
alternation for

d(8, F)(x) = [/ — Py(H]x) (3.19)

where again Py(f) is the best approximation from w, to f on [t 0]. If
{g3"*2 is the set of polynomials of Lemma 2 for the Chebyshev alternation
Ey, then

11(9 f)(t )
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The classical remainder theorem of interpolation theory [2, p. 60] then
implies that

dONC) oy dOENE _wi)
ELf—6,0) YT EFE=8,0 D’

where w;(x) = I‘[gf (x — t), and x, £ € [—0, §]. Consequently (3.19) and
(3.1) imply that ’

d(0, F)(x) M P9 | wi)]
E(f 0.0 | S Er 600t D"

Therefore

M 1m0 wo)l |
EXF 0,00+ D) (3.20)

[g ()] <

for x € [—8, 0]. Since K > n, (3.8) and (3.9) imply that
0 < max[E,(mp; —b, 0), E,(mp; 0, 0)] < E.(f; —0, 0).
But E,(mp; a, b) == mE,(p; a, b). Consequently (3.20) implies that

M | pnig)| 206m

NS i T D max(E(p; 0, 0) B0, T G2
Thus (3.18) and (3.21) imply that
 MQK)e?
| gi(x) < n = 1)1 .
Then
2MQK)2
2 Ve le < S T (322

Since the right-hand side of (3.22) is independent of 6 and the Chebyshev
alternation E, , we see that (3.22) and (3.4) establish that

2M(2K )22

)‘f(o) < m et

(3.23)
for every 8 < 8. Finally, A; may be taken as the right-hand side of (3.23).

If f»+1x) > O for all x € [—8, 8], inequality (3.5) holds for all x € [ 3§, 8]
and the proof proceeds as above. ||

ExampLE 2. Let f(x) = | x{® I = [—1, 1], and suppose that the set of
approximates is 7; . Then f"(x) = 6 | x|, and the polynomial of Theorem
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1 can be taken as p(x) =: 6x. Then Theorem | guarantees that (3.2) is a
bounded set with 8 -- 1. Thus. if the approximating class is =, , then f(x)
| x |* has a uniform Lipschitz constant on [-- 0, §] for every € 1.

COROLLARY 1. Let fe Cv - 1, 1], r 1. and suppose that [ 7(0)
O, 17w 1, but that f ™0) < 0. Then there exists a & -~ 0 for which
(3.2) is a bounded set. (If v 1 then we simply assume /0 1(0) ~ 0.)

Proof.  Expand f¢ 'V in a Taylor senies with remainder about the origin.
Since f(0) == 0, 7 - l.r L

Fov) ey el v

Without loss of generality. we can assume that /" 7(x) - 0 for all x.
[--6.8], for some & 0. Let M |/ )y w0 for x~[ o.8].
and define p+Y(x) (x"H(r D! Then

i ple Uy Fo ) M ptribix) |

and the conclusion follows from Theorem 1. |

4. LipscHITZ CONSTANTS FOrR Al O 7 |

In the previous section conditions were developed that ensure uniform
Lipschitz constants on sufficiently small intervals [ -6, 8] C [—1. 1]. In this
section we consider the boundedness of (1.4). Again. all approximates ure
from m, unless stated otherwise.

THEOREM 2. Suppose that [ C[ 1. ] satisfies the hyvpothesis of Theorein
1. Define fy(x) - f(x) for x <[ 1. 1). with 8 as in Theorem 1. and assume
fs¢m, . Then (1.4) is a bounded set. That is, if the | of Theorem 1 is not a
polyvnomial from m, on [--8, 8] then (1.4) is bounded.

Proof. Theorem 1 implies that (3.2) is bounded. The set described by
' ={/xy  fBxy16 -2 p 1L

where xe[—1, 1], is a compact subset of C[ i, 1]. Furthermore, the
hypothesis f; ¢ o, implies that I" N 7, == 7. Consequently [4. Theorem 3]
implies that there is a constant A, so that (1.2) holds. Thus, since I is essen-
tially the collection of restrictions of f to [—f, 5] for &8 =2 8 :7 1 it easily
follows that

WAB IS Ip (4.1)
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is bounded by A,. The conclusion then follows from the boundedness of
(3.2) and (4.1). 1

COROLLARY 2. If f is an analytic function on [—1, 1], then (1.4) is a
bounded set.

Proof. If fe =, on [—1, 1], then the bound is 2. If f¢ =, , the result
follows from Corollary 1 and Theorem 2. |

If f(ux) e m, for some p, 0 << pu <1, but f(x)¢m,, —1 < x <1, then
Theorem 2 does not guarantee that (1.4) is bounded. The foliowing modi-
fication of Example 1 demonstrates that in this case (1.4) may be unbounded.
We consider approximates from =, here, as in Examples 1 and 2.

ExampLE 3. As in Example 1, let {n,};_, be a sequence of positive in-
tegers satisfying 3 <{n;, and n;® << m; for k = 1, 2,... Choose p such that
0 < p < % Define ¢, as in (2.9), k =1, 2,..., and let #;, nx, %%, Brs V>
8, T, and z; be as in (2.10), k =1, 2,.... Let —1 <t/ <o/ <m/' <
o < By <y <8 <7/ <z’ <1, k=1,2,.., be as follows:

' = —p -t

o = u;

N =+

o = p o+ oy

Be = p B (4.2)
Ve =Y+ Ve

Sk,:/-L—}—ak;

T = b T

zy = p+z.

Let ¢, and a,’, kK = 1, 2,..., be positive constants to be determined later.
We now define for each k = 1, 2,..., §; and g, exactly as in (2.5) and (2.6)
with ¢, a, t, 6,7, o, B, v, 8, 7, and z replaced by ¢/, @;’, and the corresponding
entries from (4.2).

Now let
Jo = z 500 @3
for —1 <x <1, and
7o) = 209 + z 5,00, (44

for -1 <x<land k=1, 2,....
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The rest of the argument proceeds as in Example | with

Cer (S
@ o ( 270 - 2un’

with ¢, == 1, and with ¢’ chosen recursively to satisfy ¢, , - ¢, and
c € T o &
Cior |- 5 ) a,'(n, w oo (3»77) .

Then on [t,/, z;/] -+ [z, z,.] the polynomials of best approximation from
my to fand f;, , respectively, are p,(x) - O and g,(x) ~ a,'(x - ), respectiv-
ely. Also

./7‘ Jei a;'o,

and

P q, e a,’(z, 2)

and consequently

where these assertions follow uas in Example 1. As before. the ¢.'. A i.
2. are chosen small enough to ensure fe C*[ |1, 1]

Example 3 demonstrates the existence of a function f¢ C*[--1. 1] that is a
polynomial of degree at most one on [ -u, ] & [ ~1. 1] (and hence (3.2) 15
bounded with A, -= 2), that is not a polynomial of degree one on [ . 5]
for any 8 = p. and for which (1.4) is an unbounded set.

5. CONCLUDING REMARKS

Because of known relationships between Lipschitz and strong unicity
constants, (cf. [2, p. 82; 3]), all of the above results have direct implications
concerning the growth of the corresponding strong unicity constants.

Although Examples | and 3 have been constructed using approximates
from 7, , direct modifications will provide examples from any =, .
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