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Let fin C[ -- I, I] be given, and let n be a fixed nonnegative integer. For 0
e I define Po(J) to be the polynomial of degree less than or equal to n of best
uniform approximation to f on [- e, eJ. It is well known that there exists for
each such e, a constant ,\(e) such that for all g E C[ e, eJ,

Poct! Po(gll'r-o.ol :\(8»)J _. g 10.0]'

Sufficient conditions on f arc obtained to ensure that the set {AJ(e) 0
is bounded for some 8 O. An example is given showing that {A,(e) 0
may be bounded for some 8 I but not for 8 I.

I. [NTRODCCTION

Let C(!) denote the set of continuous, real valued functions on the compact
interval I, and let Me C(!) be a Haar subspace of dimension 11. Let I

denote the uniform norm on I. For fE C(l) with best approximation P(f)
from M there is a constant ,\,} 0 such that for any g E C(l),

pen Peg) i! ( 1.1 )

This is Freud's well-known theorem (see [2, p. 82]). A number of recent
papers [I, 3,4,10] have examined variants of inequality 0.1). In particular,
Bartelt [I] and Cline [3] show that A~c At may actually be chosen inde­
pendent off if the interval I is replaced by a finite point set X. Henry and
Schmidt [4] show that if r is a compact subset of C(l) and r n M then

PUl Peg)!! ( 1.2)

for all fE rand g E C(I). That is, the Lipschitz constant ;\[ in (1.2) is
"uniform" over the set r.

Henry and Wiggins [5] utilized another kind of uniformity of Lipschitz
constants to compare two local approximate solutions to an initial value

* Research for this paper was conducted while this author was on leave from Montana
State University at North Carolina State University, August 1975 to June 1976.
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problem. More specifically, [5] makes use of a special case of the problem
now to be described.

LetfE C( -1,1], and for hE C(-8, 8],0 < 8 ~ 1, define

II h lie = sup I hex)!.
-O<x<&

Suppose that Pe(h) is the best approximation from the Haar subspace
Me C C[-8,8] to hE C( -8,8]. Then inequality (1.1) becomes

II PeC!) - Pe(g) lie ~ Al8) Ilf - g lie, (1.3)

for all g E C(-8,8] where the f in (1.3) is viewed as the restriction of the
originalfEC(-l, 1] to the interval [-8, e]. Hereafter Ale) will designate
the smallest constant for which (1.3) holds for all g 6 C[-e, 8].

Let Me C[-1, 1] be a Haar subspace, and note that the set Me of restric­
tions to [-e, e] offunctions in M is also a Haar subspace for each 0 < e~ 1.
In the sequel we examine conditions onfwhich ensure that the set

A = {t\-tCe) I 0 < e~ I} (1.4)

is a bounded set, witll M = TTn , the set of algebraic polynomials of degree
n or less.

The above description suggests that this paper might well be characterized
as an additional study of Chebyshev approximations on small intervals.
Other investigations of Chebyshev approximations on small intervals include
those of Maehly and Witzgall [7], Meinardus [8J, and Nitsche [9].

2. AN EXAMPLE ON SMALL INTERVALS

In this section we construct an example which demonstrates that in general,
the set (1.4) is not bounded. This result is somewhat surprising, in that one
might expect the shrinking interval process to at least produce a uniform
Lipschitz constant for all 8 sufficiently small. That is, even if (1.4) is an un­
bounded set, one might expect that there exists a sufficiently small 0 > 0
such that

{Aie) I 0 < e ~ o} (2.1)

is a bounded set. We propose to construct anf E C[ -1, I] and corresponding
sequences {Zk} and {fk} with Zk ---+ 0 and fk E C[-Zk' Zk] such that

(2.2)

Thus (2.1) is in general not a bounded set for any 0 > O. Throughout this
section all apprOXimates are from TTl •
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EXAMPLE I. Define for real numbers u < v the function

(2.3)

Note that h,£!, attains its maximum value on [II, v] at the midpoint of [II. r]
and that

hit!' (2.4)

Let real numbers (' 0, a 0, and ,I
<3 < T < z "..:; I be given, where f3 ,- '\ y

gE C[-l, I] as follows:

a

y

l\ <: P"" y
E. Define .\.

s(x) = ch"IJ(x)
= -ch{Jy(x)
= chyo(x)

o

for :~ X f3
for f3 x y

(2.5)
for y x 8
elsewhere:

g(:r) .= s(x) a(x

o
linear on [1/,

u) for \ x 8
on the complement of [1'), T]

\] and on [8, T].
(2.6)

With this notation we prove the following lemma.

LEMMA J. Let a> 0 satis/.) ,

max[a(,:: --- u), a(a -- t)] ('(E2)S (2.7)

Then the polynomials of best approximation from 77) 10 s al1d g. respeclireh,
on [t, z] are given by

p(x)- 0 al1d q(x) a(x - a). (2.8)

Proof The first assertion is a simple consequence of the Chebyshev
alternation theorem [2, p. 75]. The alternation theorem also implies that q
is the best approximation to g on [iX, 8] with g q [,,01 cc= c( Ej2)8. Now
(2.7) implies that

Hence the alternation theorem implies that q is the best approximation from
771 to g on [to z], concluding the proof of the second assertion.

Let {nk}~~l be a sequence of positive integers with 3 11 1 and 11]/ 11;. 1 .

k= I, 2..... For k I, 2..... define

(2.9)
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Now define real numbers -1 < tk < ak < 7]k < rY-k < 13k < Yk < Dk <
'Tk < Zk < 1, k = 1,2,... , as follows:

tk = -ljnk;

ak = 0;

7]k = (llnk2
) - 2Ek = link+! ;

CXk = (llnk2
) - ~Ek ;

13k = (llnk2
) - h/2);

Yk = (lln k2
) + h/2);

Dk = (llnk2
) + !Ek ;

'Tk = (llnl) + 2Ek < link;

Zk=llnk'

(2.10)

Let Ck > 0 and ak > 0, k = 1,2,... be positive integers to be determined
later.

We now define for k = 1,2, ... , Sk(X) and gk(X) to be as in (2.5) and (2.6),
respectively, with c, a, t, a, 7], cx, 13, y, D, 'T, and Z replaced by Ck , ak , tk , ak ,
7]k , CXIe , 131e, Yk , Die , 'Tie , and Zk , respectively.

Now let

for -1 ~ x ~ I, and

Of)

f(x) = L s;(x)
j~l

fix) = gk(X) + L s;(x)
j~k+l

(2.1 I)

(2.12)

for -1 ~ x ~ 1 and k = I, 2, ....
Let us observe that the restriction of f to [n;:l' njl] is Sj(x) and this is

also the restriction of fk for j ;?: k + 1. In turn, fix) = gix) for x E [nk~l ,
nk

l] andfk(x) vanishes for x > n;l.
Define

(2.13)

where the Ck are chosen recursively as follows: Choose CI = 1 and CHI

small enough to ensure that CHI < Ck and

(2.14)

Lemma 1 guarantees that the polynomial of best approximation from 7TI

to Sk on [tk ,Zk] = [-Zk , Zk] is heX) =0= O. Since Ck+l < Ck , the construction
offimplies that the polynomial of best approximation from 7TI to f on [-Zk ,
Zk] is also Pk(X) == O.
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Now a/c satisfies (2.13), and consequently Lemma I implies that the best
approximation from 7T1 to glc on [-z/c' Zk] is q/c(x) = a/cx. Inequality (2.14)
and the construction of fk then guarantee that (li. is the best approximation
from 7T1 to f" on [-Zk , 2 1•. ].

One can easily verify that

(2.15)

and that
(2.16)

Equations (2.15), (2.16), and (2.9) finally imply that

lim
"

ql. 'I

t;

and consequently (2.2) is established for the f and I;. of (2.11) and (2.12).
In conduding Section 2 we note that CI. , k I, 2.... , can be chosen suffi-

ciently small to ensure that f E C2[ I, I].

3. SUFFICIENT CO,,"DITIONS FOR U'\IFORM LipSClIlTZ CO"STA"TS

The following theorem is the principal result of this section. We assume
throughout this section that II is given and that all approximates are from 7T"

unless stated otherwise.

THEOREM I. Let f E C[ ... I, I], al/d suppose There exisTs a number h. () .
8 I such that fE C" i I[ fl. il], and such that fI" II does not challge sigl/ Oil

[-il, 0) and on (0,8]. FurThermore, suppose there exist positivc cOl/stants III

and M, and a polynomial p E ITr; , K n. such Thar

o 111 'pili .1 1(X) . fI,,·II(X) /\4 ! pili i 1)(x) (3.1 )

is mlidfor all x E [--8, 8]. Then

{;\AI1) 0 < 11 (3.2)

is bounded. That is, If Po(h) is The best approximaTion/i'om 7T Ti To h Cr- O. 0].
then there exisTs a ;\0 0 such That

Poll>

for every g E C[ - 0, 11] amlfor cvery 11 8.

Remarks. We note that this theorem does not imply that the ~et (1.4)
is bounded. but rather that a uniform Lipschitz constant exists for all 0
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sufficiently small. We also note that although the f of Example 1 can be
chosen in C2[-1, 1], the hypothesis (3.1) is not satisfied for any K;:? 1.

Before proceeding to the proof of Theorem 1 we state the following
lemma. The result is due to Cline [3], and will be used in the proof of
Theorem 1.

LEMMA 2. Let hE C[ -B, B] with h rt 7Tn . Let P E 7Tn be the best approxi­
mation to h on [-B, B] and for each Chebyshev alternation E = {t;}~~i for
h - P define qi E 7Tn by qi(t;) = sgn[h(t;) - pet;)], j = 1, 2, ... , n + 2;
ji= i, and i = 1,... , n + 2. Now let

Q(E) = max {II qi Ilo}.
1~I::::;;:n+2

Then there exists a Chebyshev alternation E* for h - P such that

Ai/B) ~ 2Q(E*), (3.4)

where A,,(B) is the Lipschitz constantfor h on [-B, B].

Proof of Theorem 1. We first note that if fE 7Tn on [-B, B] for some BE
(0, 1], then (3.1) implies that fE 7Tn on [-0,0]. In this case At(B) ~ 2 for
all B~ o. Thus sup{AtCB) I°< B~ o} ~ 2, and (3.3) is then valid for
A6 = 2.

Suppose thatf rt 7Tn on any interval [-B, B] <: [-1, 1]. Let [-8, 0] be the
interval on which hypothesis (3.1) is satisfied. By replacing f by (-f), if
necessary, we may assume without loss of generality either that j<n+l)(x) ;:? °
for all x E [-0, 0], or that j<n+!)(o) = 0, j<n+!)(x) ;:? ° on (0, 0], and
j<n+l)(x) ~°on [-0, 0). We presently consider this latter case. Let Bbe any
positive number less than or equal to O. Then inequality (3.1) implies that

m Ip<n+!)(x) I :s:; j<n+!)(x) ~ M I p<n+l)(x)1

for x E [0, B], and that

m Ip<n+!)(x) I ~ _jln+!)(x) ~ M Ipln+!)(x) I

(3.5)

(3.6)

for x E [-B, 0]. Denote by EnU; a, b) the degree of approximation to ffrom
the set 7Tn on the interval [a, b]. Then (3.5) and Bernstein's theorem [6, p. 38]
imply that

En(mp; 0, B) ~ En(f, 0, B).

Since En(f; 0, B) ~ EnU; -B, B), (3.7) implies that

En(mp; 0, B) ~ E n(/; -B, B).

Similarly, (3.6) implies that

En(mp; -B, 0) ~ Ei/; -B, B).

(3.7)

(3.8)

(3.9)
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Let P(B, p) be the best approximation from 7Tn to P on [0, B], and let

e(B, p)(x) = p(x) -~ P(B, p)(x).

Then

(3.10)

e(B, p) IIro,e] = En(p: 0, B),

and
e1n+])(B, p)(x) p(lI. J)(x).

0.11 )

(3.12)

Similarly, if PC-B, p) is the best approximation from 7Tn to p on [-B. 0],
then

and

e( -B, p)(x) p(x) - P( ._- B, p)(x).

e( -- B, p) !re,o] ~= En(p: -- B. 0).

(3.13)

(3.14)

(3.15)

Since (3.10) and (3.13) are both polynomials of degree at most K, Markoff's
inequality [2, p. 91 and p. 94, problem 4] with (3.11) and (3.14) implies that

ern t!)(B. p)(x)

for x E [0, B], and that

! e(n i ])( --B, p)(x) I

(3.16)

(3.17)

for xE[-B,O]. Expressions (3.12), (3.15), (3.16), and (3.17) then imply

2n +lK211i2

- e"t! max[En( p; o. e), En(p; -e, 0)]. (3.18)

We note that although the constant K in (3.16), (3.17), and (3.18) does
depend on n, it is independent of B. Let Ell {tJ7~i be any Chebyshev
alternation for

d(BJ)(x) = [f - PeCO](x) (3.19)

where again PeU) is the best approximation from 7T n to f on [ 8. 11]. If
{q;}~:':i is the set of polynomials of Lemma 2 for the Chebyshev alternation
Ee , then

d(B. n(t;)
E--;'C(..---=e:B) .

.i ~= I. 2.... , 11 2. j i. I ..... 11 .,
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The classical remainder theorem of interpolation theory [2, p. 60] then
implies that

d(B, f)(x) d<n+!'(B, f)(D Wi(X)
En(f; -B, B) - qix) = En(f; -B, B) (n + l)! '

where Wi(X) = n;~2 (x - tj ), and x, gE[-0, 0]. Consequently (3.19) and
j"oi

(3.1) imply that

Therefore

(3.20)

for x E [-0, OJ. Since K > n, (3.8) and (3.9) imply that

°< max[En(mp; -B,O), En(mp; 0, B)] ~ En(f; -0, B).

But En(mp; a, b) = mEn(p; a, b). Consequently (3.20) implies that

, _ M Ip<n+l)(g)! 2n+10n+1

i q;(X)1 :':", m(n + 1)1 max[En(p; -0,0), En(p; 0, 0)] + 1. (3.21)

Thus (3.18) and (3.21) imply that

M(2K)2n+2
I qix) [ ~ m(n + l)! + 1.

Then

2M(2K)2n+2
2 max II qi lie ~ (+ 1) , + 2.
l~i~n+2 m n .

(3.22)

(3.23)

Since the right-hand side of (3.22) is independent of 0 and the Chebyshev
alternation Ee , we see that (3.22) and (3.4) establish that

2M(2K)2n+2
A,(O) ~ m(n + J)! + 2,

for every 0 ~ O. Finally, A6 may be taken as the right-hand side of (3.23).
If f<n+O(x) ~ 0 for all x E [-0, 0], inequality (3.5) holds for all x E [-0, 0]

and the proof proceeds as above. I

EXAMPLE 2. Let f(x) = I X 1
3,1 = [-1, I), and suppose that the set of

approximates is 77"1' Then f"(x) = 6 I xl , and the polynomial of Theorem
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1 can be taken as p(x) 6x. Then Theorem 1 guarantees that (3.2) is a
bounded set with 8 c .._ I. Thus. if the approximating class is 171 • then f(x)
I x 1:1 has a uniform Lipschitz constant on [- e. 0] for every e I.

COROLLARY 1. Letfeen'i[ I, I]. r I. and suppose that fill '1(0)

0, I j r· J, but that fi" rI(O) O. Then there exists a 8. 0 jiJI" ,rhie/I
(3.2) is a bounded set. (If I" I then we simply assume fI"II(O) 0.)

Prool Expand filii II in a Taylor senes with remainder about the origin.
Since fin jl(O) O. j I. ... I' I.

y' I

1)' . x. .\' ].

Without loss of generality. we
[8. 8], for some 8 O. Let
and define plnH,(x) (xl'-I)'(r

can assume lhal fi" I)(x) 0 for all .\'
.Iv! 'fi" I'I(\") m 0 for\' r ,). h].

I)!. Then

and the conclusion follows from Theorem I. I

4. LIPSCHITZ CONSTANTS FOR ALL 8

[n the previous section conditions were developed that ensure uniform
Lipschitz constants on sufficiently small intervals [-e. e] - [ 1. I]. In this
section we consider the boundedness of (1.4\. Again. all approximates arc
from 17 11 unless stated otherwise.

THEOREM 2. Suppose thatfc C[ 1. I] satislies the hypothesis oj' Theorem
J. Delinef~(x) f(8x) for x [ I. I]. Ji'ith 8 as i/1 Theorem I. and assume
j~ rt 17 II' Then (1.4) is a bounded set. That is. if the f of Theorem I is not a
polynomial from 17 11 0/1 [-8,8] then (1.4) is bounded.

Proal Theorem 1 implies that (3.2) is bounded. Thc set described hy

r Uk") f([3x) [) }3 I:.

where x E [ -- J, 1]. IS a compact subset of C[ I, 1]. Furthermore. the
hypothesisf~ ¢c 17n implies that r n 17 n ~= • Consequently [4. Theorem 3]
implies that there is a constant AI' so that (1.2) holds. Thus, since r is essen­
tially the collection of restrictions of f to [--[3, (:n for [) [3' 1 it easily
follows that

(4.1)
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is bounded by Ar . The conclusion then follows from the boundedness of
(3.2) and (4.1). I

COROLLARY 2. If f is an analytic function on [-1, 1], then (1.4) is a
bounded set.

Proof If fE 7Tn on [-1, 1], then the bound is 2. If frt 7Tn , the result
follows from Corollary 1 and Theorem 2. I

If f(fl,x) E 7Tn for some fL, 0 <: fL <: 1, but f(x) rt 7Tn , -1 :'0( x :'0( 1, then
Theorem 2 does not guarantee that (1.4) is bounded. The following modi­
fication of Example 1 demonstrates that in this case (1.4) may be unbounded.
We consider approximates from 7T1 here, as in Examples 1 and 2.

EXAMPLE 3. As in Example 1, let {nk}~~1 be a sequence of positive in­
tegers satisfying 3 :'0( n1 and nk2 <: nk+1 for k = I, 2, ... Choose fL such that
o< fL < i· Define Ek as in (2.9), k = I, 2, , and let tk , 'YJk' Cik, 13k, Yk,
Ok' Tk, and Zk be as in (2.10), k = 1, 2, Let -1 < tk' < ak' < 'YJk' <
Cik' < 13k' < Yk' < Ok' < Tk' < Zk' < I, k = 1,2,... , be as follows:

tk ' = -fL + tk ;

ak' = fL;

'YJk' = fL + 'YJk ;

Cik' = fL + Cik ;

13k' = fL + 13k ;

Yk' = Y + Yk;

Ok' = fL + Ok ;

Tk' = fL + Tk ;

Zlc' = fL + Zk .

(4.2)

Let ck ' and ak ', k = 1, 2, ... , be positive constants to be determined later.
We now define for each k = 1, 2, ... , Sk and gk exactly as in (2.5) and (2.6)
with c, a, t, a, 'YJ, Ci, 13, y, 0, T, and Z replaced by Ck', ak', and the corresponding
entries from (4.2).

Now let
00

J(x) = L s;(x)
j~1

for -1 :'0( x:'O( 1, and
00

A(x) = gk(X) + L s;(x),
j~k+1

for -1 :'0( x :'0( 1 and k = 1, 2, ....

(4.3)

(4.4)
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The rest of the argument proceeds a~ in Example I with

(/1,'

I, and with ('I,' chosen recursively to salisf) c; 1 c, and

Then on [t/;', ZI,;'] [ . 21," z/] the polynomials of best approximation from
77} to Jand I~ , respectively. are jh(x) 0 and Zj,..(x) OI,"(X fL). respectiv­
ely. Also

and

and consequently

where these assertions follow as 1I1 Example I. As hefore. the c; . /, I.
2..... are chosen small enough to enS:lre JE C"[ I. I].

Example 3 demonstrates the existence of a fUllction Ie C"[ I. 1] th~lt IS a
polynomial of degree at most one on [ fL. Ie] [ L I] (and hence (.\,2) IS

bounded with 1\ 2), that is not a polynomial of degree one on [ (5. !3]
for any f3> fL. and for which (1.4) is all unhounded set.

5. CONCLUDING REMARKS

Because of known relationships between Lipschitz and strong unicity
constants, (cf. [2, p. 82; 3]), all of the above results have direct implications
concerning the growth of the corresponding strong unicity constants.

Although Examples I and 3 have been constructed using approximates
from 771 ,direct modifications will provide examples from any 7T" '

REFERENCES

1. W. M. BARTELT, On Lipschitz conditions, strong unicity, and a theorcm of /\, K.
Cline, J. Approximation Theory 14 (t975), 245-250.

2. E. W. CHE:-<fY, "Introduction to Approximation Theory," McGra" Hill, Nc\\
York, 1966.



LIPSCHITZ CONSTANTS 235

3. A. K. CLINE, Lipschitz conditions on uniform approximation operators, J. Approxima­
tion Theory 8 (1973), 160-172.

4. M. S. HENRY AND D. SCHMIDT, Continuity theorems for the product approximation
operator, in "Theory of Approximation with Applications" (A. G. Law and B. N.
Sahney, Ed.), pp. 24-42, Academic Press, New York, 1976.

5. M. S. HENRY AND K. L. WIGGINS, Applications of approximation theory to the
initial value problem, J. Approximation Theory 17 (1976), 66-85.

6. G. G. LORENTZ, "Approximation of Functions," Holt, Rinehart and Winston, New
York, 1966.

7. H. MAEHLY AND CH. WITZGALL, Tschebyscheff-Approximationen in kleinen inter­
vallen I: Approximation durch polynome, Numer. Math. 2 (1960), 142-150.

8. G. MEINARDUS, "Approximation of Functions: Theory and Numerical Methods,"
Springer-Verlag, New York, 1967.

9. J. C. C. NITSCHE, Dber die Abhiingigkeit der Tschebyscheffschen Approximierenden
einer differenzierbaren Funktion rom Intervall, Numer. Math. 4 (1962), 262-276.

10. S. J. POREDA, Counterexamples in best approximation, Proc. Amer. Math. Soc. 56
(1976), 167-171.


